巴氏硬度计

HM-934-1

当您购买这部巴氏硬度计时,标志着您在精密测量领域里向前迈进一步。该表系一部以计算机为核心的测试工具,如果操作技术得当,其坚固性可容多年使用。在使用之前,请详阅此说明书并妥善保管在容易取阅的地方。

巴氏	布氏 10mm	维氏	韦氏	洛氏					
	500kg	5kg	W-20	В	Е	F	Н		
35		21					32		
36		22					35		
37		23					37		
38		24					40		
39		25					42		
40	25	26					45		
41	25	27					47		
42	26	28					49		
43	27	29					51		
44	27	30					54		
45	28	30					56		
46	29	31					58		
47	30	32			23		60		
48	30	33	0.7		26		62		
49	31	34	1.3		28		64		
50	32	35	1.9		31		66		
51	33	36	2.5		34		68		
52	34	38	3. 1		36		70		
53	35	39	3.6		39	30	72		
54	37	40	4.2		41	34	73		
55	38	41	4.7		44	37	75		
56	39	43	5. 3		46	40	77		
57	40	44	5.8		48	43	78		
58	42	45	6.3		50	46	80		
59	43	47	6.8		53	48	82		
60	45	49	7.3		55	51	83		
61	46	50	7.8		57	54	85		
62	48	52	8.3		59	56	86		
63	50	54	8.8		61	59	88		
64	51	56	9.2		63	61	89		
65	53	58	9.7		65	63	90		
66	55	60	10. 1		67	66	92		
67	57	62	10.6		69	68	93		
68	60	65	11.0		71	70	94		
69	62	67	11.4		73	72	95		

表概述与特点

HM-934-1型数显巴氏硬度计是我公司最新设计研发的一种压痕式硬度计。其特征在于设有平衡定位装置、硬度值数显装置、免拆卸硬度值校准调整装置。其特点在于稳定性好、校准方便、检测精度高。主要应用于铝加工行业。用于测试纯铝、较软的铝合金、较厚的铝合金、铝板带、铝型材、铝棒、铝铸件、铝锻件及铝合金制品;也可以用于玻璃行业。相关标准是ASTM B648-10(2015)《用巴科压痕器硬度计测量铝合金的压痕硬度的标准试验方法》、ASTM D2583-13《硬质塑料巴柯尔硬度标准试验方法》及GB/T 3854-2005《增强塑料巴克尔硬度试验方法》。

- * 计设计小巧,轻便,单手操作,一压即可, 无需使用经验,只要伸手可及,在任何场合 可使用。
- * 测试范围宽。从很软的纯铝到特别硬的铝合金均可测试,有效测试范围相当于布氏硬度 25~150HB。
- * 无需支撑,巴氏硬度计只在试样一侧测试,适于测试超大、超厚工件。
- * 具有最大值保持功能,记录测量期间的最大 硬度值。

2. 原理与结构

兰泰HM-934-1型数显巴氏硬度计是一种压痕 硬度计,它以特定形状的压针在标准弹簧压力作用下压入试样表面,以压入的深度来表证试

目录

1.	概	述	与	特	点	į																		1
2.	原	理	与	结	杚	J																		1
3.	技	术	参	数																				3
4.	使	用	方	法																				4
5.	仪	器	校	正																				6
6.	压:	针																						7
7.	硬.	度	块																					8
	测:																							
9.	铝·	合	金	的	典	Ξ.	탣	Е	3	Ħ	- 1	硬	į J	叓	ſ	直							1	0
10	注	音	車	顶																1 ()			

巴氏	布氏 10mm	维氏 5kg	韦氏 W-20				
	500kg	экд	W-20	В	Е	F	Н
70	64	70	11.8	17	75	74	97
71	67	72	12. 2	23	76	75	98
72	69	75	12.6	28	78	77	99
73	72	78	12. 9	33	80	79	100
74	75	81	13. 3	38	81	80	101
75	78	85	13. 7	42	83	82	102
76	80	88	14.0	47	84	83	103
77	84	92	14. 3	51	86	85	104
78	87	95	14. 7	55	87	86	105
79	90	99	15. 0	59	89	88	106
80	94	103	15. 3	63	90	89	106
81	97	108	15.6	66	91	90	107
82	101	112	15. 9	70	92	91	108
83	105	117	16. 2	73	94	92	109
84	109	121	16. 4	76	95	93	109
85	113	126	16. 7	79	96	94	110
86	117	131	16. 9	81	97	95	111
87	121	137	17. 2	84	98	96	111
88	126	142	17.4	86	99	97	112
89	130		17.6	88	100	98	112
90	135		17.8	90	101	98	113
91	140		18. 0		102	99	114
92	145		18. 2		103	100	
93			18. 4		103	100	
94			18.6		104	101	
95			18. 7		105	102	
96			18. 9		106	102	
97			19.0		106	103	
98			19. 2		107		
99			19. 3		107		
100			19. 4				

13

样的硬度。

巴氏硬度可按下式计算:

HBa=100-h/0.0076

式中 HBa 为巴氏硬度符号 h 为压痕深度 (mm) 0.0076 是一个巴氏硬度值所代表的压痕

深度 (mm)

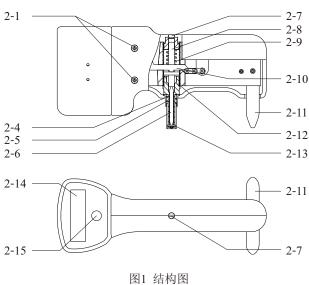
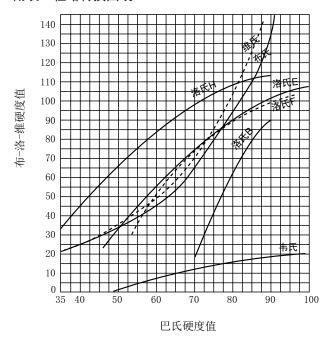



图1 结构图

附表1 粗略转换曲线

附表2 硬度换算表(见下页)

注:由于软金属材料的性质,使不同硬度测量系统间不能建立统一的关系,因此换算表仅供参考,建议对于每种材料通过试验来确定巴氏硬度换算关系。

9. 铝合金的典型巴氏硬度值

HBa-1型巴氏硬度计采用标准负荷弹簧和标准压针,是目前应用最广的巴氏硬度计,可用于测试铝及铝合金、铜及铜合金、纤维增强塑料(玻璃钢)、其他增强塑料、非增强硬塑料等材料,硬度测试范围相当于25-135HBW(500kg,10mm)。各种不同牌号、不同状态的铝及铝合金材料典型巴氏硬度值如表3所示:表3.铝合金的典型巴氏硬度值

合金及 热处理	1100-0	3003-0	3003H14	2024-0
巴氏硬度值	35	42	56	60
合金及 热处理	5052-0	5052H14	6061T6	2024T3
巴氏硬度值	62	62	80	85

10. 注意事项

当仪器使用一段时间后,尤其是多次测量软铝合金材料的以后,因测量时材料产生碎屑粘在测针上,可能导致读数偏大。要消除此误差,应该将测针端点上面的碎屑清洁干净,再进行测量。

10

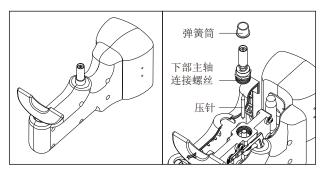


图3 拆卸图

7. 硬度块

本仪器附带高值和低值两个硬度块。 硬度块只可使用有数值的一面,如两面使用硬度块会造成读数误差。

测试硬度块时应避免在距离边缘或旧压痕3mm 范围内测试,否则会造成读数误差。

8. 测量次数

采用多次测试获取平均值的办法。试样越软,测试次数应越多。对于复合材料,测试次数应 更多。

在均质材料和非均质材料上对应不同硬度值的 推荐测量次数如表1、表2所示。 2-1 外壳螺钉 2-7 上部主轴弹簧

2-2 弹簧筒 2-8 杠杆 2-3 下部主轴弹簧 2-9 支脚

2-4 压针 2-10 下部主轴连接螺丝

2-5 主轴调节螺丝 2-11 挡圈 2-6 上部主轴 2-12 显示屏 2-13 电源/功能键

图2 显示器图

2-14 电池符号 2-15 最大值指示符 2-16 测量读数

3. 技术参数

测量范围: 0~100 HBa, 相当于25~135 HBW 分辨率: 0.1 HBa

示值误差: 81~88 HBa±1 HBa

42~48 Hba±2 HBa

重复性误差: 81~88 HBa±1.5 HBa

42~48 HBa±2.5 HBa

工作环境: 温度: 0~50°C (32~122°F)

湿度: <80%RH

3

面上不应有明显的变形痕迹。试样尺寸应保证使压针尖端到任一边缘的最小距离不小于3mm。

- * 应确保在当前测试点上压针周围3mm内无以 前测试留下的旧压痕。
- * 为保证测试准确,必须使压针于试样表面垂直。
- * 试样应放置平稳,小块试样应放置在坚硬稳固的衬垫物上(如钢板、玻璃板等)。
- * 试样不应翘起,测试过程中试样不应有任何 移动或弹性变形。

4.4 测试操作

手握仪器,将仪器放置在试样上,平稳快速 施加足够压力,读取显示数值,这一读数就 是巴氏硬度值。

4.5 最大值保持功能

轻按电源/功能键,显示器右上角就出现 'MAX',此时测量结果显示为本次测量过 程中的最大值,若要取消此功能,只要再按 一次电源/功能键,此时'MAX'消失。

4.6 更换电池

当显示器上出现电池符号时,需要更换电池。 打开电池盖,取出电池。依照电池盒上标签 所示,正确地装上电池。

如果在很长一段时间内不使用该仪表,请将 电池取出,以防电池腐烂而损坏仪表。 电源: 2 节7号电池

尺寸: 170x63x82mm 6.7x2.5x3.2inch

重量: 390g(不含电池) 13.76oz

标准配置: 主机

备用压针(2支)

标准硬度块(2块,42~48/81~88)

小螺丝刀

小扳手

手提便携箱

使用说明书

可选附件: 蓝牙适配器及软件

4. 使用方法

4.1 仪器开机及关机

仪器开机只需轻按电源/功能键即可。仪器的 关机方式有两种,自动关机和手动关机。在 开机状态下,按住电源/功能键大概3秒,钟 仪器关机。在停止操作10分钟后自动关机。

4.2 检查仪器

将仪器附带的硬度块置于坚硬平坦的表面上,测试硬度块。测量值应在两个硬度块标示的 范围内,如果超差,应按第5条进行校正。

4.3 试样要求

- * 试样表面应光滑、清洁、无机械损伤。试样表面可做轻度抛光以去除划痕或涂层。
- * 试样厚度应不小于1.5mm, 测试后试样支承

4

5. 仪器校正

本仪器校正分为高端校正和示值校正两部分。 出厂时,仪器已经经过校正,无需再调整; 当测量标准硬度块出现超差,或者换针以后, 对仪器进行校正。

注意: 高端校正前必须放松主轴调节螺丝。

5.1 高端校正

用小螺丝刀把主轴调节螺丝扭到最松(逆时针),将仪器置于坚硬平坦的表面上(例如玻璃板),加压于机壳,使压针全部退回到压针套内,此时数值应显示100.0。如果超差,按住电源/多功能键不放,大概9秒钟,显示屏出现"【】】"。松开按键,仪器会自动调整到100.0。满刻度校正完成.

5.2 示值校正

用小螺丝刀旋动手柄上方的主轴调节螺丝, 顺时针旋动时示值降低,逆时针旋动时示值 升高。反复调整直至示值处于硬度块的范围 内。

表1 铝合金材料上的测量次数 (根据ASTM B648-2000)

巴氏硬度值	最小测量次数					
50	6					
60	5					
70	4					
80	3					

表2 玻璃钢与硬塑料上的测量次数 (根据GB/T3854-2005)

非增强塑料 (硬塑料)	最小测量 次数	增强塑料 (玻璃钢)	最小测量 次数		
20	9	30	29		
30	8	40	22		
40	7	50	16		
50	6	60	10		
60	5	70	5		
70	4				
80	3				

9

6. 压针

随着仪器的频繁使用,压针会发生微量磨损, 此时测量值会发生偏差,所以应定期检查压针 的磨损程度。

在仪器进行示值校正时,如果校正之后仍不能 同时使两个硬度块的测量读数都在硬度块标示 的范围内,则说明压针已发生了较大磨损,压 针长度已小于允许的范围,此时应更换压针。 更换压针后应重新校正仪器。

更换压针

用小螺丝刀松开手柄两边的外壳螺丝(共12个)。取下外壳,取出弹簧筒。用仪器附带的专用扳手(粗端)旋下下部主轴连接螺丝,把下部主轴取下。取出压针,装入新压针,把下部主轴重新旋入,并用扳手锁紧。套上弹簧筒,装上外壳,用小螺丝刀重新锁紧外壳螺丝。更换压针完成,重新按照第5条校正仪器。更换压针,请参考下图。